Scope of activities

The Atmosphere Collaboration Team, first created under Arctic Research Plan 2013-2017, will continue operations under Arctic Research Plan 2017-2021. The team's scope of activities will include implementation of Research Objectives and Performance Elements listed under Research Goal 2, which is described as follows in the Plan:

Over the industrial period, Arctic surface air temperature has increased more rapidly than in other parts of the globe due to a complex interplay of processes—a phenomenon called “Arctic Amplification” (Serreze and Barry 2011). Mechanisms and feedbacks governing atmosphere-surface heat exchange (i.e., meridional [north-south] heat transport and radiative forcing23), coupled with changing surface properties, drive this enhanced warming. Conversely, changes in Arctic conditions may impact circulation that changes weather and climate patterns over the Northern Hemisphere (Cohen et al. 2014) and beyond.

To address all IARPC policy drivers, IARPC collaboration teams must advance an integrated understanding of atmospheric processes as well as the resulting radiative forcing in the Arctic. The Arctic atmosphere is linked through large-scale circulation with global weather and climate systems (Arctic-Global System). Regionally, atmospheric processes drive changing weather patterns and influence sea ice amounts and distribution, knowledge of which is critical for managing emergency response and law enforcement efforts (Security). These changing weather patterns and sea ice distributions, along with changes in precipitation, snow cover, and permafrost melting, affect terrestrial ecosystems and other environmental conditions that alter subsistence systems and how Arctic residents interact with their environment. Further, changes in the environment have led to increased wildfire activity in the Arctic and at lower latitudes, causing air quality problems (Well-being) for Arctic residents (Kasischke et al. 2010).

The atmosphere links with many of the interdependent components of the Arctic climate system—the ocean and marine ecosystems, sea ice, land surface and permafrost, and terrestrial ecosystems. Accordingly, the Atmosphere Goal is linked to several other Goals that focus on these systems and with Environmental Intelligence. The interface between each of these climate sub-systems and the atmosphere can be measured by the surface energy budget (heat and radiation) and fluxes of moisture, aerosol, and gases (Bourassa et al. 2013). Characterizing these energy and mass fluxes across the Arctic is essential for understanding the future state of Arctic weather and climate. But a paucity of detailed observations of each of these atmospheric constituents over the different Arctic surface types precludes definitive, empirically-based understanding of the trends and variability in heat and mass fluxes over different domains and seasons and of the various radiative forcing mechanisms that control this variability.

Atmospheric constituents that drive radiative forcing—aerosols, clouds, and gases—affect the radiation and energy budget in the Arctic differently than at lower latitudes due to unique surface, atmospheric stability, and solar intensity states. Aerosols can change the Arctic radiation balance through direct radiative forcing of the atmosphere (Quinn et al. 2008), through aerosol-cloud indirect effects (e.g., de Boer et al. 2013), or by lowering the albedo of (typically) bright Arctic surfaces after deposition of black carbon or other absorbing species, potentially hastening snow and ice melt (Flanner et al. 2007). The abundance of aerosols and some gases (e.g., ozone) in the Arctic are affected by transport and removal processes between source regions at lower latitudes and the Arctic. Improving quantitative understanding of these processes at lower latitudes and within the Arctic is key to improving predictability of Arctic climate forcing (AMAP 2015; Arnold et al. 2016).

Due to seasonally low sun angles and high surface albedos and the absence of solar radiation during the polar night, Arctic clouds have a limited ability to cool the surface by reflecting solar energy, but cloud infrared radiation significantly warms the surface (Intrieri et al. 2002). As a result, the net annual cloud radiative forcing at the Arctic surface is positive (a warming), opposite to the global cloud radiative effect. The Arctic cloud radiative forcing and its seasonal variability plays a critical role in modulating the surface energy budget and thereby affects the state of sea ice, ice sheets, permafrost, and snow cover (Kwok and Untersteiner 2011). Cloud forcing is dictated by lifetime, physical properties, and precipitation, which are governed by complex interactions between local- and large-scale processes involving dynamics, moisture supply, and aerosol influences on cloud nucleation (Garrett and Zhao 2006). The greatest challenge for those studying Arctic clouds currently is in understanding and representing the controls on cloud phase (Shupe 2011; Morrison et al. 2012).

In addition to cloud and aerosol influences on radiative forcing, Arctic carbon stores have the potential to greatly impact future climate states. The Arctic contains vast amounts of sequestered carbon in permafrost and marine hydrates, with an uncertain potential for CO2, methane, and other releases into the atmosphere (AMAP 2015). Methane has a global warming potential (GWP) 28 times that of carbon dioxide (CO2) per molecule, averaged over a 20-year period: though the atmospheric lifetime of methane is about a decade, that of CO2 is several hundred years. When considering methane’s 12-year atmospheric lifetime, its GWP increases to 84 times that of carbon dioxide over 20 years (IPCC, 2014).

Understanding current methane emissions and potential scenarios under a warmer Arctic is imperative. Many global circulation models overlook carbon feedback loops from Arctic tundra; carbon release from thawing and decomposing tundra could, in turn, further accelerate carbon release—a scenario known as the Permafrost Carbon Feedback. Observations and recent analyses indicate that warming has not led to significant methane release from the permafrost (Sweeney et al. 2016); but the distribution of measurements precludes a definitive determination of methane sources and their strengths.

The Atmosphere Goal focuses on advancing observational systems of atmospheric constituents and surface energy fluxes, synthesizing existing and planned observations and models for better process understanding, and working within IARPC Collaborations to enhance knowledge of how the Arctic atmosphere and other parts of the climate system interface to produce the observed Arctic amplification and the corresponding observed changes in surface air temperature and sea ice loss. The team will draw from a range of surface-based observational systems maintained by multiple agencies including the long- term National Oceanic and Atmospheric Administration (NOAA) Barrow, Alaska Observatory, National Aeronautics and Space Administration’s (NASA) Aerosol Robotic Network (AERONET) and Micro-Pulse Lidar (MPL) networks, and the Department of Energy’s (DOE) facilities on the North Slope of Alaska, among others. Sub-orbital measurements from manned and unmanned aircraft will be exploited whenever possible, and support for enhancing and providing uniformity in both surface-based and sub- orbital observations will be pursued. The satellite contributions to this effort include top-of-atmosphere energy balance measurements from instruments such as Clouds and the Earth's Radiant Energy System (CERES), vertical distributions of aerosols and clouds from space-based lidar such as Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), and aerosol amount and type mapping, mainly over smoke and pollution source regions in the sub-Arctic from Moderate-resolution Imaging SpectroRadiometer (MODIS), Multi-angle Imaging SpectroRadiometer (MISR), Ozone Monitoring Instrument (OMI), and Visible Infrared Imaging Radiometer Suite (VIIRS), which, when combined with aerosol transport modeling, provide constraints on the flux of aerosols to the polar region.


Team leaders

Allison McComiskey
NOAA Global Monitoring Division (Website)

Ashley Williamson
DOE (Website)

Gijs de Boer

Performance elements from the Arctic research plan

2.1 Advance understanding of Arctic atmospheric processes and their integrated impact on the surface energy budget.

  • 2.1.1 Support planning, preparation, and implementation for the Multi- disciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC), including deployment of the DOE Atmospheric Radiation Measurement (ARM) mobile atmospheric measurement facility and other coupled measurements on the drifting German icebreaker, RV Polarstern.
  • 2.1.2 Improve uniformity and accessibility of surface radiative and heat flux information from satellite retrievals and airborne and ground-based measurements to quantify spatial variability of the surface energy budget over land, ice, and open ocean environments in the Arctic. Augment efforts through IARPC Collaborations to integrate surface radiative and heat flux measurements with cryospheric process understanding and modeling efforts.

2.2 Improve understanding of the composition of the Arctic atmosphere – moisture, clouds, precipitation, aerosols, and gases—their net radiative effects and impact on Arctic climate.

  • 2.2.1 Maintain and enhance support for fixed ground sites that contribute to long-term observations of Arctic atmospheric components using in situ and remote sensing measurements of atmospheric state parameters, gases, aerosols, and clouds. Improve uniformity in the suite of measurements and data products across sites to provide “network” information for increased physical understanding and representation of the Arctic climate system.
  • 2.2.2 Continue support for and planning and analysis of past and potential future aircraft missions (e.g., NASA Atmospheric Tomography Mission—AToM—and air Pollution in the Arctic: Climate, Environment, and Societies—PACES24) that contribute observations of atmospheric composition and relevant processes such as transport, deposition, and radiation.
  • 2.2.3 Improve vertical and regional characterization of atmospheric gases, aerosol, and cloud properties through the use of existing, long-term data sets, together with new measurements, in underrepresented Arctic regions. Develop a better understanding of the representative nature of fixed sites by describing the range of conditions that exist across the Arctic.
  • 2.2.4 In collaboration with efforts described under the Permafrost Goal, support observation syntheses of atmospheric carbon to provide better process understanding of the relationships between warming and soil carbon release in the Arctic. Integrate atmospheric measurements with related observations and modeling of land surface and environmental parameters to advance this process understanding.

2.3 Improve understanding of the processes that control the formation, longevity, precipitation, and physical properties of Arctic clouds; the spatio-temporal distributions of aerosol types; and Artic cloud and aerosol modulation of the surface radiation budget.

  • 2.3.1 Support and synthesize multi-platform observations of cloud and aerosol properties from surface, airborne, and space-borne instruments (integrated with models as appropriate) to describe the physical and radiative characteristics of cloud and aerosol over a range of spatio-temporal scales and over a range of Arctic land cover domains.
  • 2.3.2 Support integrated observational and modeling studies of atmospheric processes and their relationship to land cover that will increase understanding of the characteristics, evolution, and radiative properties of Arctic clouds and their interactions with aerosol, leading to advancement in representing clouds in models at many scales.
  • 2.3.3 Understand the impacts of Arctic and Boreal Forest wildfires on emissions, distributions, weather, and climate impacts of biomass burning plumes through improved use of emissions databases and chemical transport modeling. Gain better understanding of deposition processes through studies and better characterization of the spatial distribution of biomass burning aerosol..
  • 2.3.4 In collaboration with efforts described under the Environmental Intelligence Goal, support evaluation of reanalyses and their ability to represent Arctic clouds and controlling parameters with fidelity using satellite, aircraft, and ground-based observations.


Photo by Craig Beals (PolarTREC 2008), Courtesy of ARCUS

The IARPC Atmosphere Collaboration Team goals encompass a better understanding of short-lived climate forcers in the Arctic as well as Arctic cloud and aerosol properties and processes. For all atmospheric constituents, support and enhancement of ground-based measurements, support for manned and unmanned aircraft campaigns, source identification and transport to the Arctic, linking ground-based and satellite observations, and support of modeling through process studies and syntheses were all objectives.

Over the 2013-2017 year plan period, US agencies have maintained and enhanced ground-based monitoring of gases, aerosols, clouds, and radiation budgets across the Arctic. During FY2016, data streams from previously established ground-based sites have continued and augmented as some of the sites were upgraded in 2015. 

Results of several aircraft campaigns to provide needed details for better process understanding as well as better spatial coverage were analyzed and published during 2016. Among these campaigns were NASA’s Arctic Radiation-IceBridge Sea and Ice Experiment (ARISE), Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) and the ARM Airborne Carbon Measurements V (ACME-V). Support for the current NASA-funded Atmospheric Tomography Mission (AToM) to study the impact of human-produced air pollution on greenhouse gases and on chemically reactive gases in the atmosphere was also provided. 

In addition to these manned aircraft campaigns, US agencies pushed forward the use of Unmanned Aerial Systems (UAS), The second year of the DOE-funded Evaluating Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS) campaign has operated a variety of instrumented UAS during brief but continuing campaign periods at Oliktok Point, Alaska and DOE ARM has also started routine small UAS and tethered balloon operations at Oliktok.  

The Multi-disciplinary Drifting Observatory for the Study of the Arctic Climate (MOSAiC) campaign has gained support from several agencies and countries that will coordinate multi-year Arctic Ocean drifting stations with an atmospheric studies emphasis but with a strong foundation for linking atmospheric processes to other Arctic systems such as sea ice and oceanic processes. An international Arctic workshop, sponsored by the International Arctic Science Committee (IASC), was co-led and coordinated with support from NOAA’s Arctic Research Program.  

The Arctic Council’s Arctic Monitoring and Assessment Program (AMAP) convened two separate expert groups to synthesize and assess the state of knowledge about the impacts of SLCF’s on Arctic climate. The summary report for policy makers was published in FY2015, and in early FY 2016final reports synthesizing the state of knowledge on methane and black carbon were published.  

Priorities for 2017

The Atmosphere Collaboration Team handled 19 milestones for this reporting period. One was deactivated and two are in progress leaving 16 of the milestones met. The Atmosphere Collaboration Team will continue under the IARPC Arctic Research Plan 2017-2012 with a focus on advancing process and system understanding of the changing Arctic atmospheric composition dynamics and the resulting changes in the surface energy budgets.

Request an account

Join scientists from Federal, State, academic, NGO, and industry organizations working to accelerate the progress of Arctic research.

Membership in IARPC Collaborations is subject to approval and adherence to the codes of conduct.


Sara Bowden, IARPC Executive Secretary
(703) 447-7828

Please direct website questions to Jessica Rohde, Web Manager, at